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Abstract. We provide a thorough analysis of the path-dependent volatility model introduced by

Guyon [13], proving existence and uniqueness of a strong solution, characterising its behaviour at bound-

ary points, and deriving large deviations estimates. We further develop a numerical algorithm in order

to jointly calibrate S&P 500 and VIX market data.

1. Introduction

Stochastic volatility models have been used extensively over the past three decades in order to re-

produce particular features of market data, on Equities, FX and Fixed Income markets, both under the

historical measure and for pricing purposes. Most of the literature and the models used in practice are

based on a Markovian assumption for the underlying process, essentially for mathematical convenience,

as PDE techniques and Monte Carlo schemes are more readily available then. However, recent models

have departed from this Markovian confinement and have shown to provide extremely accurate fit to

market data. One approach considers instantaneous volatility driven by fractional Brownian motion,

giving rise to the rough volatility generation and its numerous descendents. A less strodden, yet very in-

tuitive, path, originally introduced by Engle [7] and Bollerslev [2] in the early 1980s suggested to consider

models where volatility depends on the past history of the stock price process. Their approach, though,

was under the historical measure, and Duan [5] investigated these discrete-time models in the context

of option pricing. With this in mind, Hobson and Rogers [15] extended this approach to continuous

time, suggesting that instantaneous volatility depends on exponentially weighted moments of the stock

price. Contrary to stochastic volatility models (rough or not), the market here is complete. Hobson

and Rogers [15] showed that such models generate implied volatility smiles and skews consistent with

market data. Further results investigated some theoretical properties of these models, in particular [20]

proving existence and uniqueness of strong solutions. This path has recently been given new highlights

by Guyon [12], who concentrated on the following setup for the stock price process S:

dSt
St

= σ(t, St, Yt)l(t, St)dWt, S0 := s0 > 0,

where W is a standard Brownian motion, Y an adapted process and l(·) the leverage function ensuring

(similar to local volatility models) that European options are fully recovered. Inspired by Hobson and

Rogers [15], Guyon [13] suggested to choose Y as an exponentially weighted moving average of the stock

price. Not only does this model calibrate perfectly to the observed smile, but the diffusion map σ(·) can

be chosen in such a way that joint calibration with VIX data becomes feasible, a notoriously hard task

so far. We take up on this challenge set by Guyon, and analyse theoretical and empirical properties of

this class of models. In particular, we provide a full characterisation of the behaviour of the process at

its boundaries and derive precise small-time large deviations asymptotics. Only scarce related results for

systems with memory are available in the literature, for example by Azencott, Geiger and Ott [1] for

systems with finite discrete-time delay or Ma, Ren, Touzi and Zhang [18] for non-Markovian stochastic

differential equations with random coefficients.
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The structure of the paper is as follows. In Section 2, we set the notations and present the model.

Section 3 gathers the main theoretical results, proving existence and uniqueness of a strong solution

(Section 3.1), deriving the stationary distribution (Section 3.2) and presenting pathwise large deviations

estimates in Section 3.3, from which implied volatility asymptotics follow readily. Finally, in Section 4

we construct a numerical scheme to estimate the coefficients of the system for a joint calibration to S&P

500 and VIX market data.

2. Set up and notations

The goal of this project is to develop and analyse a model describing the relationship between the VIX

index and the VVIX, a volatility of volatility index. Figure 1 below shows a scatter plot of one versus

the other over a five-year period. The approximate linear relationship highlighted by the least-square

regression fit was first noted by Guyon [13], and we follow his recommendations here. The underlying

Figure 1. Historical VVIX vs historical VIX (13/4/12 - 8/5/17). Source: CBOE data.

process S, describing the evolution of the S&P index follows the general dynamics

dSt
St

= σ(Yt)dWt, S0 := s0 > 0

for some given Brownian motion W generating a filtration F = (Ft)t≥0, where σ : R∗+ → R is non

anticipative. Following Guyon [13] and Hobson and Rogers [15], we assume that the process Y is adapted

to F and is a function of the past history of the stock S, making the latter non-Markovian, in the sense

(1) Yt :=
St

S
h

t

, for t ∈ T , where S
h

t :=
1

h

∫ t

−∞
exp

{
− t− u

h

}
Sudu

is the exponential weighted moving average (EWMA) of the stock price process. Here, T = [0, T ] for some

fixed time horizon T . The constant h > 0, denoting the length of the time window, is left unspecified for

now. Using Itô’s formula, we can summarise the dynamics for the couple (S, Y ) as

(2)
dSt = Stσ(Yt)dWt, S0 = s0 > 0,

dYt = b(Yt)dt+ σ̃(Yt)dWt, Y0 = y0 > 0,

with b(y) := 1
hy(1− y) and σ̃(y) := yσ(y) for y > 0. Guyon [13] showed that, for the linear relationship

between the VIX and the VVIX to hold, one needs to consider a diffusion coefficient of the form

(3) σ(x) := −α
β

+ γx−β ,

with α, β, γ > 0. In that case, σ̃ is null at yσ :=
(
βγ
α

)1/β

, and

σ̃(0) =


not defined, if β > 1,

0, if β < 1,

γ, if β = 1.
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Before diving into the asymptotic behaviour of the process, we first concentrate on the existence and

uniqueness of a strong solution for (2), depending on the values of α, β and γ, and classify the singular

points 0, yσ and infinity.

3. Theoretical analysis of the path-dependent volatility model

3.1. Boundary conditions. We start the analysis of the model by a detailed study of the behaviour

of the system (2) at the boundary points 0, yσ and ∞. Recall [3, Definition 2.3] that a point d ∈ R is

called singular if 1+|b|
σ̃2 is not locally integrable in a neighbourhood of d. A point that is not singular is

called regular. A singular point is further called isolated if it admits a deleted neighbourhood consisting

of regular points. Introduce the hitting times τx := inf {t ≥ 0 : Yt = x} and τx,y := min (τx, τy). The

precise classification of boundary points is rather delicate and we only give below an informal help, and

refer the interested reader to [3, Sections 2.3 and 2.4] for full and precise details:

Definition 3.1. Let a > 0.

• A point x is said to have right-type 0, and we write x ∈ Ba0+, if for any y0 ∈ [x, x+a], there exists

a unique solution defined up to τx,a. This solution reaches x with strictly positive probability,

E (τx,x+a) is finite, and P
(
Yτx,x+a = 0

)
> 0.

• A point x is said to have right-type 1, and we write x ∈ Ba1+, if for any y0 ∈ [x, x+a], there exists

a unique solution defined up to τx,a. This solution reaches x with strictly positive probability.

Any solution may only leave x in the left direction.

• A point x is said to have right-type 3 if for any y0 ∈ (x, x + a], there exists a unique solution

defined up to τx+a. This solution never reaches x and E (τx+a) is finite. We write x ∈ Ba3+.

• Infinity is called a recurrent boundary point if a solution cannot explode there. Moreover, if there

are no singular points between y0 and a point z < y0, then the solution reaches z almost surely.

The left-types Ba1− and Ba3− are defined similarly.

The following proposition, proved in Appendix A.1, characterises the behaviour of the solution to (2)

at the origin and at infinity.

Proposition 3.2. Infinity is a recurrent boundary, and the origin is regular if and only if β > 1
2 , and

• for β > 1
2 , zero is an exit, non-entrance boundary point and belongs to Byσ0+;

• for 0 ≤ β ≤ 1
2 , zero is an exit, non-entrance boundary point and belongs to Byσ1+.

The following theorem, proved in Section A.2, is more involved and fully characterises the solution to

the SDE (2).

Theorem 3.3. yσ is an isolated singular point, and for a > 0, the following holds:

Left boundary of yσ > y0 Right boundary of yσ < y0

yσ < 1 Ba1− Ba3+

yσ ≥ 1 Ba3− Ba1+

3.2. Stationary distribution and pricing PDE. We now prove that the process Y introduced in (2)

admits a stationary distribution and we derive the pricing PDE associated to (2).

3.2.1. Stationary distribution. We recall [9, Section 3.2] that a process (Yt)t>0 is ergodic if it admits a

unique, stationary distribution Π, and for any measurable bounded function g, the almost sure limit

lim
t↑∞

1

t

∫ t

0

g(Ys)ds =

∫
g(y)Π(dy)

holds. If it exists, an ergodic solution must satisfy L∗Π = 0, where L∗ is the adjoint of the infinitesimal

generator L, defined [9, Section 1.5.3] via the equality

(4)

∫
Ψ(ξ)Lφ(ξ)dξ =

∫
φ(ξ)L∗Ψ(ξ)dξ,

for any rapidly decaying smooth test functions φ and Ψ.
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Proposition 3.4. The infinitesimal generator LY of Y in (2) and its dual L∗Y read

(LY f)(y) =
1

h
y(1−y)

∂

∂y
+

1

2
y2σ2(y)

∂2

∂y2
and (L∗Y f)(y) = − ∂

∂y

(
1

h
y(1− y)f(y)

)
+

1

2

∂2

∂y2

(
y2σ2(y)f(y)

)
.

Proof. Using (4) and integration by part, we obtain the expression for L∗. Given y ∈ R and f, g : R→ R
twice continuously differentiable functions with bounded derivatives, we have

〈f,L∗Y g〉 =

∫
R
f(y)

[
− ∂

∂y

(
1

h
y(1− y)g(y)

)
+

1

2

∂2

∂y2

(
y2σ2(y)g(y)

)]
dy,

= −
∫
R

∂f

∂y
(y)

{
− 1

h
y(1− y)g(y) +

1

2

∂

∂y

(
y2σ2(y)g(y)

)}
dy,

=
1

h

∫
R

∂f

∂y
(y)y(1− y)g(y)dy − 1

2

∫
R

∂f

∂y
(y)

∂

∂y

(
y2σ2(y)g(y)

)
dy,

=
1

h

∫
R

∂f

∂y
(y)y(1− y)g(y)dy +

1

2

∫
R

∂2f

∂y2
(y)y2σ2(y)g(y)dy,

=

∫
R
g(y)

[
1

h
y(1− y)

∂f

∂y
(y) +

1

2
y2σ2(y)

∂2f

∂y2
(y)

]
dy,

= 〈LY f, g〉.

The rapidly decaying smooth test functions f and g ensure that the boundary terms in the integration

by parts are equal to zero. �

In our setting, the process Y in (2) admits at least one stationary distribution, which can be proved

easily following the arguments in [21].

Proposition 3.5. The SDE (2) admits a stationary distribution Φ. However, since the map σ is not

bounded away from zero, Φ might not be the unique solution to the Poisson equation L∗Φ = 0.

Remark 3.6. For f : R→ R, finding the explicit solution of the Poisson equation is tedious. Indeed,

(L∗Y f)(y) = − ∂

∂y

(
1

h
y(1− y)f(y)

)
+

1

2

∂2

∂y2

(
y2σ2(y)f(y)

)
= 0,

is equivalent to

1

2
y2f ′′(y)

[(
α

β

)2

− 2αγ

β
y−β + γ2y−2β

]

+ yf ′(y)

[
2

{(
α

β

)2

− αγ

β
(2− β)y−β + (1− β)γ2y−2β

}
− 1

h
(1− y)

]

+ f(y)

[(
α

β

)2

+
αγ

β
(1− β)(2α+ β)y−β + γ2(β − 1)

(
α2(β − 1) + β

)
y−2β − 1

h
(1− 2y)

]
= 0,

with the constraint
∫
R f(y)dy = 1. This is a highly non-linear problem, which does not admit any explicit

solution in general.

3.2.2. Pricing PDE. Consider an option with payoffH(ST , YT ) at expiry T , and denote its price P (t, St, Yt)

at time t ≤ T . Since the market is complete, we can construct a self-financing and riskless replicating

portfolio consisting of the derivative itself and −(SPS + Y PY )/S units of the underlying asset S to find

the corresponding pricing PDE.

Proposition 3.7. Under the risk-neutral measure Q, the pricing PDE associated to (2) is

(5)

(
∂t + rs∂S +

(
1− y
h

+ r

)
y∂y +

s2

2
σ2(y)∂ss + sxσ2(y)∂sy +

y2

2
σ2(y)∂yy − r

)
P (t, s, y) = 0,

for all (t, s, y) ∈ [0, T )× (0,∞)2, with terminal condition P (T, s, y) = H(s, y).
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Equation (5) can be rewritten as (LY + L1 + L2)P = 0, with LY defined in Proposition 3.4 and
L1 := syσ2(y)

∂2

∂s∂y
+ ry

∂

∂y
,

L2 :=
∂

∂t
+
s2

2
σ2(y)

∂2

∂s2
+ rs

∂

∂s
− r.

The operator L2 is the Black-Scholes infinitesimal generator with volatility σ(y). Unfortunately, this pric-

ing PDE does not admit an obvious explicit solution. Approximate solutions can be found by expanding

the solution using perturbation methods, as developed in [9], but we leave this to future endeavours.

3.3. Small-time asymptotics. We now investigate the small-time behaviour of the solution to (2)

using large deviations techniques. Consider the log-stock price process X := logS. For ε > 0 and t ∈ T ,

introduce the small-time rescaling (Xε
t , Y

ε
t ) := (Xεt, Yεt). The model becomes

(6)

{
dXε

t = −ε
2
σ2(Y εt )dt+

√
εσ(Y εt )dWt, Xε

0 := x0 = log(S0),

dY εt = εb(Y εt )dt+
√
εσ̃(Y εt )dWt, Y ε0 = y0 > 0.

Let H denote the space of absolutely continuous functions starting at the origin, with square integrable

derivatives, such that

H :=

{
f : T → R such that f =

∫
g(s)ds on T for some g ∈ L2(T ), and inf

t∈T
ft ≥

1

α
log

(
1− yβ0

α

βγ

)}
.

Remark 3.8. When y0 ≥ yσ, the condition

(7) inf
t∈T

ft ≥
1

α
log

(
1− yβ0

α

βγ

)
,

is automatically satisfied and the space H boils down to the usual Cameron-Martin space. When y0 < yσ,

Condition (7) is needed to ensure that the solution of the controlled ODE introduced below is positive.

The main result here is the following theorem, proved in Appendix A.5, which states a pathwise

large deviations principle for the log-stock price process. With x0 := (x0, y0), introduce the map IX,Y

on C(T ,R× R∗+) by

IX,Y (g) := inf
{

Λ(f), f ∈ H,Sx0(f) = g
}
,

where Λ is the usual rate function of the standard Brownian motion:

Λ(f) :=


1

2

∫ T

0

∥∥∥ḟt∥∥∥2

dt, if f ∈ H,

+∞, otherwise,

and Sx0(f) on T is the solution to the controlled ODE ġt = (σ(gt), σ̃(gt))
> ·(ḟt, ḟt), starting from g0 = x0.

Theorem 3.9. The rescaled log-stock price process Xε satisfies a pathwise large deviations principle on

C(T ,R) as ε tends to zero with speed ε and rate function

(8) IX(g) := inf
{

IX,Y (h),h := (g, l), l ∈ C(T ,R∗+), l0 = y0

}
,

The proof of the theorem relies on first obtaining a large deviations principle for the rescaled process Y ε,

which we state below (and defer its proof to Appendix A.4). Similarly to above, denote Sy(f)(t) the

solution to the controlled ODE ġt = σ̃(gt)ḟt, with g0 = y.

Proposition 3.10. The rescaled process Y ε satisfies a pathwise large deviations principle on C(T ,R∗+)

as ε tends to zero with speed ε and rate function

(9) IY (g) := inf
{

Λ(f), f ∈ H,Sy0(f) = g
}
.

Large deviations have been used extensively in Mathematical Finance in order to derive asymp-

totic behaviour of the implied volatility [10]. The latter, Σt(k), is the unique non-negative solution

to CBS(t, ek,Σt(k)) = Cobs(t, ek), with Cobs(t, ek) the observed Call option prices with maturity t and

strike ek, and CBS is the Call option price in the Black-Scholes model.
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Corollary 3.11. The small-time asymptotic behaviour of the implied volatility is given by

lim
t↓0

Σt(k) =


k2

2

(
inf
y≥k

IX(g)|g(1)=y

)−1

, if k > 0,

k2

2

(
inf
y≤k

IX(g)|g(1)=y

)−1

, if k < 0.

Proof. We only consider k > 0, the other case being symmetric. It follows from [11, Corollary 7.1] that

taking ε = t, from Theorem 3.9, X satisfies a large deviations principle with speed t and rate function IX :

lim
t↓0

t logP(X ≥ k) = − inf
y≥k

IX(g)|g(1)=y.

In the Black Scholes model, we have the following small-time implied volatility behaviour:

lim
t↓0

tΣ2
t (k) logP(X ≥ k) = −k

2

2
,

and the result follows from [11, Corollary 7.1]. �

4. Numerical estimation of the coefficients (α, β γ)

We now devise an algorithm, using VIX and VVIX data, to find the optimal parameters (α, β, γ)

appearing in the definition of the diffusion function σ in (3). We consider the continuously monitored

formula for the VIX:

VIX2
t := E

[
1

∆

∫ t+∆

t

d〈Xs, Xs〉ds | Ft

]
=

1

∆
E

[∫ t+∆

t

σ2(Yu)du | Ft

]
,

where ∆ is equal to 30 days. In order to simulate the VIX on [0, T ], we must first approximate the

integral and the conditional expectation, and we denote V̂IXt its approximation: along a discretisation

grid Ut := (ui)i=0,...,N with ui := t+ i∆
N , assume that σ(Yu) is constant on each interval, and write

VIX2
t =

1

∆

N−1∑
i=0

∫ ui+1

ui

Et
[
σ2(Yu)

]
du ' 1

∆

N−1∑
i=0

Et
[
σ2(Yui)

]
(ui+1 − ui) =

1

N

N−1∑
i=0

Et
[
σ2(Yui)

]
The second step is to approximate the conditional expectation. Since the process Y is Markovian, then

E
[
σ2(Yui) | Ft

]
= E

[
σ2(Yui) | Yt

]
, for any ui ∈ Ut. We thus approximate the conditional expectation

using the empirical mean, by simulating M paths (Y (1), · · · , Y (M)) of Y , so that

(10)
1

N

N−1∑
i=0

Et
[
σ2(Yui)

]
' 1

NM

M∑
j=1

N−1∑
i=0

σ2(Y (j)
ui ) =: V̂IX

2

t .

Note that, in order to simulate V̂IX
2

t , one first needs to obtain the starting point Yt, from which all the

points (Yui)i=1,...,N can then be determined. Since Yt := St
S
h
t

from (1), with

S
h

t :=
1

h

∫ t

−∞
e−

t−v
h Svdv '

1

h

I−1∑
i=0

∫ vi+1

vi

e−
t−v
h Svdv '

e−t/h

h
∆t

I−1∑
i=0

evi/hSvi ,

with Vt := (vi)i=0,...,I a time-discretisation of (−∞, t], such that v0 is the first time for which we can

observe the S&P 500, and vI = t; we further set the grid size to be vi+1 − vi =: ∆t for all i = 0, ..., I.

In our simulations, we will consider v0 to be 25/04/2008. Empirically, in order for this approximation to

be as precise as possible, one needs ∆t to be as small as possible. However here, dealing with daily data

for the S&P500 imposes ∆t = 1 day. We leave an extended analysis of this with high-frequency data to

future work. Hence

(11) Yt '
St

S
h

t

' St
e−t/h

h ∆t

∑I−1
i=0 evi/hSvi

' het/hSt

∆t

∑I−1
i=0 evi/hSvi

.

Note that for any t ∈ [0, T ], the two time grids Vt and Ut do not overlap, the former taking into account

time before t, the latter time after t. The algorithm to approximate
(
VIX2

t

)
t∈[0,T ]

is as follows:
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Algorithm:

(i) Compute (Yt)t∈[0,T ] using (11), with S obtained from S&P 500 data;

(ii) For t ∈ [0, T ], using Yt from (i), simulate the auxiliary process (Ŷs)s>t on the grid Ut as

Ŷui+1
:= ψ(Ŷui ,Wui)11{ψ(Ŷui ,Wui

)>D},

where

ψ(x,w) := x

(
1 +

∆t

h
(1− x) + σ(x)∆w

)
,

with ∆t := 1
252 and ∆Wui := Wui+1 −Wui ' 1√

252
N (0, 1), and obtain 1

N

∑N−1
i=0 σ2(Ŷui);

(iii) Repeat step (ii) M times to obtain V̂IX
2

t from (10);

(iv) Repeat steps (ii)-(iii) on the grid to obtain V̂IX
2

on VT ∩ [0, T ].

Remark 4.1. In the Euler scheme in step (ii) of the algorithm, we introduced the threshold D to prevent

the simulations from ‘exploding’ when Y approaches zero. We could alternatively apply the threshold

on σ(Yt), but we leave the precise analysis of the (weak or strong) convergence of our discretisation for

future work, hints thereabout can be picked from [17].

4.1. Simulations. We use daily data to simulate VIX2, between January 2nd, 2013 and May 8th, 2017

(corresponding to T = 1200 days). The simulations are run for h ∈ {180, 30, 5} days with different

parameters (α, β, γ), first taken arbitrarily, but optimised over later. Table 1 summarises them:

h = 180 h = 30 h = 5

α 0.9 2.1 5

β 1.5 1.2 6

γ 0.8 1.9 1.7

N 500 500 500

M 500 500 500

D 0 0.01 1

Table 1. Parameters used in the simulations

Note first from (2) that the process is mean reverting to 1. The smaller the h, the larger the mean

reversion 1/h, which is clearly visible in Figure 2.

(a) h = 180 days (b) h = 30 days (c) h = 5 days

Figure 2. Process Y simulated using the Euler scheme between 2/1/2013 and 8/5/2017.

Using the algorithm above, the simulations for the VIX2, respectively for h = 180, 30 and 5 days, are

depicted in Figure 3.

In all cases, the simulated VIX2 seems to have jumps similar to those visible in the historical VIX2.

However, when h = 5 days, the variations of the simulated VIX2 are very small compared to the historical

one. In order to obtain similar magnitudes, for h = 5 days, we had to consider a threshold D = 1, meaning
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(b) h = 30 days
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(c) h = 5 days

Figure 3. Simulated (blue) and historical (red) VIX, between 2/1/2013 and 8/5/2017.

that many simulated paths were discarded, thus creating a clear bias. We also chose (α, β, γ) = (5, 6, 1.5),

giving unrealistic volatility values, for example σ(1) = 0.66 and confirming that the representation (3)

works best for h > ∆ = 30. In order to analyse the results, we plot in Figure 4 the simulated VIX and

the historical VIX against the historical VVIX as well as against the recent trend of S&P 500, that is,

the process Y simulated using its definition Yt := St
S
h
t

for t ∈ [0, T ] and h ∈ {5, 30, 180}.
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(a) h = 180 days

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

VIX

40

60

80

100

120

140

160

180

V
V

IX

Simulation

Market

(b) h = 30 days

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

VIX

40

60

80

100

120

140

160

180

V
V

IX

Simulation

Market

(c) h = 5 days

Figure 4. Simulated (blue crosses) and historical (yellow circles) VIX against historical

VVIX, between 2/1/13 and 8/5/17. The red line is the linear regression fit.

In the first two figures (for h = 180 and 30 days), it seems to fit the regression of the simulated data

as well. However, for h = 5 days, the simulated values clearly follow a different trend. This might be

explained by the presence of a large threshold D in the simulations, and by the fact that the approximation

for σ using the VIX data is only valid for h > ∆. Finally, Figure 5 shows the simulated VIX and historical

VIX against the recent trend of S&P 500. The latter are computed using the definition of Y changing

the window h to adapt it to each case. We observe that the model does not fit market data for h = 5,

which is consistent with the assumption that the representation of the function σ is only valid for h > ∆.
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Figure 5. Simulated (blue crosses) and historical (yellow circles) VIX against the recent
trend of S&P500, between 2/1/13 and 8/5/17. Source: CBOE VIX Index.
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4.2. Optimisation of coefficients. The calibration of the model is performed by minimising the least

squared error (LSE)

LSE(α, β, γ) :=
∑

t∈VT∩[0,T ]

∣∣∣VIXt − V̂IXt(α, β, γ)
∣∣∣2

over the coefficients (α, β, γ). Table 2 summarises the results of the optimisation, indicating the optimised

parameters as well as the initial guesses and the number of runs. The optimal coefficients are close to

the initial parameters (α0, β0, γ0). This is due to starting with good guesses, in order to reduce the

actual computation time, quite involved in the numerics (which can be seen from the small number of

simulations (N,M) = (100, 200) considered).

h = 180 h = 30 h = 5

α0 0.9 1.9 3.1

β0 1.5 1.2 8.1

γ0 0.8 1.8 0.5

α∗ 0.88 1.96 3.15

β∗ 1.52 1.21 8.01

γ∗ 0.83 1.76 0.48

T 500 200 100

N 100 200 100

M 200 100 200

D 0 0.01 0

Table 2. Initial and calibrated parameters

Appendix A. Additional Proofs

A.1. Proof of Proposition 3.2. We start with the behaviour at the origin. Regarding the first state-

ment, for ε > 0,∫ ε

−ε

1 + |b(x)|
σ̃2(x)

dx ≤ 2

[
1 + max

x∈[−ε,ε]
|b(x)|

] ∫ ε

0

dx

σ̃2(x)
, ≤ 2

[
1 + maxx∈[−ε,ε] |b(x)|

]
γ2 + δ

∫ ε

0

dx

x2(1−β)
,

as there exists δ ∈ (−γ2,∞) and x > 0 such that for x ≤ x, γ2 − 2αγβ x
β + α2

β2 x
2β ≥ γ2 + δ > 0. This

integral is finite if and only if β > 1
2 . Now, for x > 0, we have

lim
x↓0+

b(x)
1
hx

= lim
x↓0+

(1− x) = 1 and lim
x↓0+

σ̃(x)

γx1−β = lim
x↓0+

(
1− α

βγ
xβ
)

= 1.

We can then apply [3, Theorem 5.3] for γ := 2β − 1 6= −1 as β > 0, and conclude.

Regarding the behaviour at infinity, for x > 0, we have, as β > 0

lim
x↑∞

b(x)

− 1
hx

2
= 1 and lim

x↑∞

σ̃(x)

−αβx
= lim
x↑∞

{
1− βγ

α
x−β

}
= 1.

We can then apply [3, Theorem 5.7] for γ = 0 > −1 and λ := − β2

hα2 < 0 and ∞ has type A.

A.2. Proof of Theorem 3.3(i). We first show that yσ is an isolated point. For ε > 0,∫ yσ+ε

yσ

1 + |b(x)|
σ̃2(x)

dx ≥
∫ yσ+ε

yσ

dx

σ̃2(x)
=

∫ yσ+ε

yσ

dx

x2
(
−αβ + γx−β

)2

≥ Kε

∫ yσ+ε

yσ

dx(
−αβxβ + γ

)2 =
Kε

γ2

∫ ε

0

dx(
1− α

βγx
β
σ

(
1 + x

yσ

)β)2(12)



10 ANTOINE JACQUIER AND CHLOÉ LACOMBE

with Kε := (yσ + ε)−2(1−β) for β ∈ (0, 1), Kε := y
2(β−1)
σ for β > 1 and Kε := 1 for β = 1.

Introduce the following quantities:

(13)


Aβ :=

(β − 1)(β − 2)

2
,

Bβ := Aβ

[
Aβ −

β − 3

3

]
,

Cβ := Aβ

[
− (β − 3)(β − 4)

12
+

(β − 1)(β − 2)(β − 3)

3
−A2

β

]
.

A straightforward Taylor expansion around the origin then yields[
1− α

βγ
xβσ

(
1 +

x

yσ

)β]−2

=
y2
σ

β2x2

{[
1− 2Aβx

yσ
+ (2Bβ +A2

β)
x2

y2
σ

]
+

[
2(Cβ −AβBβ)

x3

y3
σ

+ o(x3)

]}
,

which is not integrable around zero. We thus conclude about the right behaviour of yσ by noting that

the last term in (12) diverges. Using similar arguments,∫ yσ

yσ−ε

1 + |b(x)|
σ̃2(x)

dx ≥
∫ yσ

yσ−ε

dx

σ̃2(x)
=

∫ yσ

yσ−ε

dx

x2
(
−αβ + γx−β

)2 ≥ Kε

∫ yσ

yσ−ε

dx(
−αβxβ + γ

)2 =∞,

with Kε := y
−2(1−β)
σ for β ∈ (0, 1), Kε := (yσ − ε)2(β−1) for β > 1 and Kε := 1 for β = 1.

Introduce, for a > 0 and x ∈ (0, a], the following functions:

(14) ρ(x) := exp

(∫ a

x

2b(y)

σ2(y)
dy

)
, s(x) :=


∫ x

0

ρ(y)dy, if yσ ≥ 1,

−
∫ a

x

ρ(y)dy, if yσ < 1,
and ϕ(x) :=

1 + |b(x)|
σ2(x)

.

We rely here on the analysis in [3, Section 2.3]. The key ingredient is the following lemma:

Lemma A.1. The following hold:

lim
x↓0

ρ(x) = 0,

∫ a

0

ρ(y)dy <∞,
∫ a

0

ϕ(x)

ρ(x)
dx =∞,

∫ a

0

ϕ(x)s(x)dx <∞, if yσ ≥ 1,

lim
x↓0

ρ(x) =∞,
∫ a

0

ρ(y)dy =∞,
∫ a

0

ϕ(x)

ρ(x)
|s(x)|dx <∞, if yσ < 1.

Introduce now the process Z := (Y − yσ), satisfying the SDE

dZt = b(Zt)dt+ σ(Zt)dWt, Z0 := y0 − yσ > 0.

with b(x) := b(x + yσ) and σ(x) := σ̃(x + yσ) for x > 0. Armed with Lemma A.1, the right behaviour

of Z at the origin, which corresponds to the right behaviour for the original process Y at yσ. The case

yσ ≥ 1 follows from [3, Theorem 2.13], whereas the case yσ < 1 follows from [3, Theorem 2.16].

Proof of Lemma A.1. We start with the limiting behaviour of the function ρ and its integral. A straight-

forward Taylor expansion around the origin yields

(15)[
1− α

βγ
xβσ

[
1 +

y

yσ

]β]−2

=
y2
σ

β2y2

[[
1− 2Aβ

y

yσ
+ (2Bβ +A2

β)
y2

y2
σ

]
+

[
2(Cβ −AβBβ)

y3

y3
σ

+ o(x3)

]]
,

with Aβ , Bβ , Cβ introduced in (13). Introduce K :=
2x2β+1
σ (1−yσ)
hβ2γ2 ≤ 0 as yσ ≥ 1 and Ka

β := − 1
a −

2Aβ
yσ

log(a) +
2Bβ+A2

β

y2σ
a.

When yσ ≥ 1, using (15), we obtain the asymptotic behaviour, as x approaches zero,

(16)
2b(x)

σ2(x)
=
K

x2

(
1− 2Aβ

x

yσ
+ (2Bβ +A2

β)

(
x

yσ

)2

+ 2(Cβ −AβBβ)

(
x

yσ

)3

+ o(x3)

)
.
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As the expansion is uniform on [x, a], one obtains

(17)

ρ(x) = exp

(
2

∫ a

x

b(y)

σ2(y)
dy

)
= exp

(
K

x

(
1 +

2Aβ
yσ

x log x

))
exp

(
KKa

β −
2Bβ +A2

β

y2
σ

Kx+ o(x)

)

= exp

(
K

x
+KKa

β

)
x

2AβK

yσ (1 + o(x)).

Since K ≤ 0, ρ(x) tends to zero as x tends to zero from above, and
∫ a

0
ρ(x)dx is finite.

In the case yσ < 1, the expansion (17) is still valid, albeit with K ≥ 0. Therefore ρ explodes at the

origin and
∫ a

0
ρ(y)dy is infinite.

Now, it is straightforward to see that∫ a

0

1 + |b(x)|
ρ(x)σ2(x)

dx ≥
∫ a

0

dx

ρ(x)σ̃2(x+ yσ)
≥
∫ a

0

dx

σ̃2(x+ yσ)
,

which is clearly infinite., because ρ is bounded above by 1 on (0, a] and from the asymptotic behaviour

of the integrand around the origin, analysed in (12).

We now prove the last statement of the lemma, and start with the case yσ ≥ 1. With this,
∫ a

0
ρ(y)dy

is finite and s(x) =
∫ x

0
ρ(y)dy for x ∈ (0, a]. Using (17), we can write the asymptotic behaviour of s(·)

around the origin by integrating the asymptotic behaviour of ρ(·) around zero. Classical asymptotic

expansions for integrals [19, Chapter 3.3] (note that the leading contribution arises at the right boundary

of the integration domain) yields, after the change of variable y 7→ zx,

s(x) =

∫ x

0

ρ(y)dy = eKK
a
βx

2AβK

yσ
+1

∫ 1

0

exp

(
K

zx

)
z

2AβK

yσ dz = eKK
a
βx

2AβK

yσ
+1 exp

{
K

x

}(
− 1

K
x+ o(x)

)
,

as x tends to zero. Combining this with (15) and (17), we obtain

s(x)

ρ(x)σ2(x)
=

x2β
σ

β2γ2
x

(
− 1

K
x+ o(x)

)
1

x2
(1 + o(1)) = − x2β

σ

Kβ2γ2
(1 + o(1)) ,

which is integrable on (0, a] and concludes the proof, using the fact that∫ a

0

1 + |b(x)|
ρ(x)σ2(x)

s(x)dx ≤
(

1 + max
x∈(0,a]

|b(x)|
)∫ a

0

s(x)

ρ(x)σ2(x)
dx <∞.

Consider now the case where yσ < 1.
∫ a

0
1+|b(x)|
ρ(x)σ2(x)

|s(x)|dx ≤
[
1 + max(0,a] |b|

] ∫ a
0

|s(x)|
ρ(x)σ2(x)

dx. Since

both |s(x)| and ρ(x)σ2(x) diverge to infinity at the origin, we need to study the behaviour of the integrand

around zero to be able to conclude. We already proved that
∫ a

0
ρ(x)dx is infinite for yσ < 1. Hence,

for x ∈ (0, a], we obtain s(x) := −
∫ a
x
ρ(y)dy. For δ > 0 such that x < δ < a and x > 0,

∫ a
x
ρ(y)dy =∫ δ

x
ρ(y)dy +

∫ a
δ
ρ(y)dy. The second integral exists as the integral of a continuous function over a closed

interval in R+. Regarding the first one, classical asymptotic expansions for integrals and (17), yield, after

the change of variable y 7→ zx,∫ δ

x

ρ(y)dy = eKK
a
βx1+

2AβK

yσ

∫ δ/x

1

exp

(
K

xz

)
z

2AβK

yσ dz = eKK
a
βx1+

2AβK

yσ e
K
x

( x
K

+ o(x)
)
,

and the asymptotic behaviour of the integrand around the origin becomes

|s(x)|
ρ(x)σ2(x)

=
x2β
σ

β2γ2

(
x2

K
+ o(x2)

)
1

x2
(1 + o(1)) =

x2β
σ

β2γ2K
(1 + o(1)),

which is integrable at the origin, and the claim is proved. �

A.3. Proof of Theorem 3.3(ii). The strategy to prove the proposition is similar, albeit with different

computations, to the previous case. Introduce, for a > 0 and x ∈ (0, a],

ρ(x) := exp

(∫ a

x

2b(y)

σ2(y)
dy

)
and s(x) :=


∫ x

0

ρ(y)dy, if yσ < 1,

−
∫ a

x

ρ(y)dy, if yσ ≥ 1.
and ϕ(x) :=

1 + |b(x)|
σ2(x)

.
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In order to determine the left behaviour of yσ, we first state the following lemmas. They will enable us

to decide which theorem to use from [3, Section 2.3].

Lemma A.2.

lim
x↓0+

ρ(x) =∞,
∫ a

0

ρ(y)dy =∞,
∫ a

0

ϕ(x)

ρ(x)
|s(x)|dx <∞, if yσ ≥ 1,

lim
x↓0+

ρ(x) = 0,

∫ a

0

ρ(y)dy <∞,
∫ a

0

ϕ(x)

ρ(x)
dx =∞,

∫ a

0

ϕ(x)s(x)dx <∞, if yσ < 1.

Similarly to before, introduce the process Z := yσ − Y satisfying the SDE

dZt = b(Zt)dt+ σ(Zt)dWt, Z0 := yσ − y0 > 0,

as well as the maps b(x) := −b(yσ − x) and σ(x) := −σ̃(yσ − x) for x > 0. With Lemma A.2, we obtain

the left behaviour of Z at the origin, corresponding to the left behaviour of yσ for Y . The case yσ < 1

follows from [3, Theorem 2.13], and the case yσ ≥ 1 from [3, Theorem 2.16], and Theorem 3.3(ii) follows.

Proof of Lemma A.2. A straightforward Taylor expansion around the origin yields

(18)[
1− αxβσ

βγ

[
1− y

yσ

]β]−2

=
y2
σ

β2y2

{[
1 +

2Aβy

yσ
+ (2Bβ +A2

β)
y2

y2
σ

]
+

[
2(AβBβ − Cβ)

y3

y3
σ

+ o(x3)

]}
,

with Aβ , Bβ , Cβ defined in (13). We start with the behaviour of the function ρ and its integrated version.

Consider first the case yσ ≥ 1. We split the range of possibilities into three possible intervals for a:

(i) If a < yσ − 1, then yσ − x ≥ yσ − a > 1 and b is negative on [yσ − a, yσ − x]. Then, for x ∈ (0, a],∫ a

x

b(y)

σ2(y)
dy =

∫ a

x

−b(yσ − y)

σ̃2(yσ − y)
dy = −

∫ a

x

b(yσ − y)dy

(yσ − y)2(1−β)γ2
(

1− α
βγx

β
σ(1− y

yσ
)β
)2

=
1

h

∫ a

x

(yσ − y)2β−1(yσ − y − 1)

γ2
(

1− α
βγx

β
σ(1− y

yσ
)β
)2 dy

≥ (yσ − a)
2β−1

(yσ − a− 1)

γ2h

∫ a

x

dy(
1− α

βγx
β
σ(1− y

yσ
)β
)2 ,

as miny∈[x,a]

[
(yσ − y)2β−1(yσ − y − 1)

]
= (yσ − a)

2β−1
(yσ − a− 1) > 0. Indeed the map y 7→

y2β−1(y − 1) is increasing on [yσ − a, yσ − x] because yσ − a > 1. Noting that (18) is uniform on

[x, a], we obtain, as x approaches zero

exp

2 (yσ − a)
2β−1

(yσ − a− 1)

γ2h

∫ a

x

dy(
1− α

βγx
β
σ(1− y

yσ
)β
)2

 = exp

{
K

x
+KK

a

β

}
x−

2AβK

yσ (1 + o(x)),

with K :=
(yσ−a)2β−1(yσ−a−1)y2σ

hβ2γ2 > 0 and K
a

β := − 1
a +

2Aβ
yσ

log(a) +
2Bβ+A2

β

y2σ
a, and therefore

limx↓0 ρ(x) =∞ and
∫ a

0
ρ(x)dx =∞.

(ii) If yσ − 1 ≤ a < yσ, then for x ∈ (0, a],∫ a

x

b(y)

σ2(y)
dy =

∫ yσ−1

x

b(y)

σ2(y)
dy +

∫ a

yσ−1

b(y)

σ2(y)
dy.

Similarly to (i), one can prove that limx↓0
∫ yσ−1

x
b(y)
σ2(y)

dy =∞. Then, on (yσ−1, a], σ does not go

to zero and is continuous, thus bounded; similarly, b is negative and continuous, hence bounded

on (yσ − 1, a]. Therefore
∫ a
yσ−1

b(y)
σ2(y)

dy <∞, for x ∈ (0, a], and

lim
x↓0

ρ(x) = exp

(∫ a

yσ−1

b(y)

σ2(y)
dy

)
exp

(∫ yσ−1

x

b(y)

σ2(y)
dy

)
=∞.
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(iii) If yσ ≤ a, then for x ∈ (0, a],∫ a

x

b(y)

σ2(y)
dy =

∫ yσ−1

x

b(y)

σ2(y)
dy +

∫ yσ

yσ−1

b(y)

σ2(y)
dy +

∫ a

yσ

b(y)

σ2(y)
dy.

Similarly to (ii), it is easy to show that
∫ yσ
yσ−1

b(y)
σ2(y)

dy = −
∫ 1

0
b(y)
σ̃2(y)dy ≤ 0. Then, as b is positive

on (yσ, a],
∫ a
yσ

b(y)
σ2(y)

dy ≥ 0, and limx↓0 ρ(x) =∞.

Consider now the case yσ < 1. Using (18), we have the asymptotic behaviour, as x approaches zero

(19)
2b(x)

σ2(x)
=
K̃

x2

(
1 + 2Aβ

x

yσ
+ (2Bβ +Aβ)

(
x

yσ

)2

+ 2(aβBβ − Cβ)

(
x

yσ

)3

+ o(x3)

)
,

with K̃ :=
2x2β+1
σ (yσ−1)
hβ2γ2 < 0 as yσ < 1. Since the expansion is again uniform on [x, a], we obtain

ρ(x) = exp

{
2

∫ a

x

b(y)

σ2(y)
dy

}
= exp

{
K̃

x

(
1− 2Aβ

yσ
x log x

)}
exp

{
K̃K

a

β −
2Bβ +A2

β

y2
σ

K̃x+ o(x)

}
,

= exp

{
K̃

x
+ K̃K

a

β

}
x−

2AβK̃

yσ (1 + o(x)).(20)

Since K̃ < 0, we easily deduce that limx↓0 ρ(x) = 0, and
∫ a

0
ρ(x)dx is finite.

The middle statement in the lemma is straightforward. When x ∈ (0, a],
∫ a
x

b(y)
σ2(y)

dy = −
∫ yσ−x
yσ−a

b(y)
σ̃2(y)dy.

Since 0 < yσ−a < yσ−x < 1, b is positive on [yσ−a, yσ−x] and the above integral is therefore negative.

Hence, ρ is bounded by 1 on (0, a], and∫ a

0

1 + |b(x)|
σ2(x)

dx ≥
∫ a

0

dx

σ̃2(yσ − x)
=∞,

using (18), which concludes the proof.

The final integrals in the lemma are rather delicate to analyse. We start with the case yσ < 1.

As
∫ a

0
ρ(x)dx < ∞, s(x) =

∫ x
0
ρ(y)dy. Using (20), one can obtain the asymptotic behaviour of s(·)

around zero by integrating the asymptotic behaviour of ρ(·) around 0. Classical asymptotic expansions

for integrals (note that the leading contribution arises at the right boundary of the integration domain)

yields, after the change of variable y 7→ xz,

(21)

s(x) =

∫ x

0

ρ(y)dy = eK̃K
a
βx1−

2AβK̃

yσ

∫ 1

0

exp

(
K̃

xz

)
z

−2AβK̃

yσ dz,

= eK̃K
a
βx1−

2AβK̃

yσ exp

(
K̃

x

)(
− x

K̃
+ o(x)

)
, as x tends to zero.

Therefore, combining (18), (20) and (21), we obtain

s(x)

ρ(x)σ2(x)
= x

(
− 1

K̃
x+ o(x)

)
x2β
σ

β2γ2

1

x2
(1 + o(1)) = − x2β

σ

β2γ2K̃
(1 + o(1)),

which is integrable on (0, a] and concludes the proof.

We now move on to the case where yσ ≥ 1. In that case,∫ a

0

1 + |b(x)|
ρ(x)σ2(x)

|s(x)|dx ≤
[
1 + max

(0,a]
|b|
] ∫ a

0

|s(x)|
ρ(x)σ2(x)

dx.

As limx↓0 |s(x)| = ∞ and limx↓0 ρ(x)σ2(x) = ∞, one needs to study the behaviour of the integrand

around zero to conclude. As
∫ a

0
ρ(x)dx = ∞, for x ∈ (0, a], s(x) := −

∫ a
x
ρ(y)dy. For δ > 0 such that

x < δ < a and x > 0,
∫ a
x
ρ(y)dy =

∫ δ
x
ρ(y)dy +

∫ a
δ
ρ(y)dy. Note that the second integral is convergent as

the integral of a continuous function over a closed interval of R.
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Classical asymptotic expansions for integrals [19, Chapter 3.3] and (20), yield, after mapping y 7→ zx,∫ δ

x

ρ(y)dy = eK̃K̃
a
βx1−

2AβK̃

yσ

∫ δ/x

1

exp

(
K̃

xz

)
z−

2AβK̃

yσ dz = eK̃K̃
a
βx1−

2AβK̃

yσ e
K̃
x

(
x

K̃
+ o(x)

)
,

and the asymptotic behaviour of the integrand around the origin is given by

|s(x)|
ρ(x)σ2(x)

=
x2β
σ

β2γ2

(
x2

K̃
+ o(x2)

)
1 + o(1)

x2
=

x2β
σ

β2γ2K̃
(1 + o(1)),

which is integrable at the origin, and concludes the proof. �

A.4. Proof of Proposition 3.10. As the process Y ε is in R∗+ instead of R, we adapt the proof of [22,

Theorem 2.9] to show that it satisfies a large deviations principle with speed ε and rate function IY .

Note first that for yσ > 0, and in both cases y0 ≥ yσ and y0 < yσ, the function σ̃ is locally Lipschitz

continuous on R∗+. Furthermore, for f ∈ H, the Picard-Lindelöf Theorem implies that the controlled

ODE ġt = σ̃(gt)ḟt, with g0 = x admits the solution

Sx(f)(t) =

(
βγ

α

) 1
β
[
e−α

∫ t
0
ḟudu

(
xβ

α

βγ
− 1

)
+ 1

]1/β

, for t ∈ T , x > 0.

This formulation requires the term
[
e−α

∫ t
0
ḟudu

(
xβ α

βγ − 1
)

+ 1
]

to be positive for all x > 0:

• If y0 ≥ yσ, then yβ0
α
βγ − 1 ≥ 0 and Sy0(f) is positive on T ;

• If y0 < yσ, then yβ0
α
βγ − 1 < 0 and Sy0(f) is positive on T if and only if Condition (7) holds.

The crucial step in [22, Theorem 2.9] is [22, Theorem 2.7], which states that if
√
εW is close to f ∈ H,

then Y ε should be close to Sy0(f), the solution of the controlled ODE. The case of bounded and globally

Lipschitz coefficients follows directly from [22, Theorem 2.7]. In order to deal with locally Lipschitz

coefficients here, we need to localise. For 0 < rσ < rb, the functions

b(x) :=

 b(x), ‖x‖ ≤ rb,

b

(
rx

‖x‖

)
, ‖x‖ > rb,

and σ(x) :=

 σ̃(x), ‖x‖ > rσ,

σ̃

(
rx

‖x‖

)
, ‖x‖ ≤ rσ.

are bounded and globally Lipschitz continuous on R∗+, and clearly εb(·) converges uniformly to zero on R∗+
as ε goes to zero. Moreover, given η ∈ (rb, rσ), there exists 0 < r ≤ min{η − rσ, η − rb} such that the

δ-tube around Sy0(f) is contained in Br(η). In order for this radius r to exist, one simply needs to make

sure that the solution Sy0(f) of the controlled ODE never reaches zero (explosion is impossible as infinity

is recurrent), which is obvious when y0 ≥ yσ, and guaranteed by Condition (7) when y0 < yσ.

Denote Y
ε

the solution to dY
ε

t = εb(Y
ε

t )dt+
√
εσ(Y

ε

t )dWt with Y
ε

0 = y0 > 0. Then the two sequences

(Y
ε
)ε>0 and (Y ε)ε>0 are identical on Br(η). Thus, for each δ, λ > 0, there exist ξ, ζ > 0 such that, for

all f ∈ H with Λ(f) ≤ λ and x ∈ Bξ(y0),

P
[
‖Y ε − Sy0(f)‖∞ > δ, ‖

√
εW − f‖∞ ≤ ζ

]
= P

[
‖Y ε − Sy0(f)‖∞ > δ, ‖

√
εW − f‖∞ ≤ ζ

]
.

The constants ξ, ζ > 0 are such that [22, Theorem 2.7] is satisfied. Hence, for each R, δ, λ > 0, there exist

ζ, ξ, ε0 > 0 such that, for all f ∈ H with Λ(f) ≤ λ, x ∈ Bξ(y0), ε ≤ ε0,

P
[
‖Y ε − Sy0(f)‖∞ > δ, ‖

√
εW − f‖∞ ≤ ζ

]
≤ exp

{
−R
ε

}
holds, and the proof follows from [22, Theorem 2.9].

A.5. Proof of Theorem 3.9. To obtain a large deviations principle for Xε, a large deviations principle

for the rescaled process Xε := (Xε, Y ε) needs to be proved.

dXε
t = εb(Xε

t )dt+
√
εa(Xε

t )dWt,
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with initial condition Xε
0 := x0 =

(
log s0

y0

)
and the maps b, a : R∗+ → R2 defined as

b(Xε
t ) =

(
− 1

2σ
2(Y εt )

b(Y εt )

)
and a(Xε

t ) =

(
σ(Y εt )

σ̃(Y εt )

)
.

These two maps are both locally Lipschitz continuous on R × R∗+. Solving the controlled ODE for Y ε

is sufficient to solve the controlled ODE for the process Xε. Using the proof of Proposition 3.10, for

f := (f, f) with f ∈ H, the controlled ODE ġt = a(gt)ḟt, with g0 = x0 has a solution g = Sx0(f) on T .

For y0 > yσ, the solution Sy0 is strictly positive and Sx0(f) exists on T for all f ∈ H and x0 ∈ R× R∗+.

In this case, H boils down to the Cameron-Martin space. For y0 < yσ, Condition (7) ensures that Sy0
is positive. Applying [22, Theorem 2.9], the sequence Xε then satisfies a large deviations principle on

C(T ,R× R∗+) as ε tends to zero, with speed ε and rate function

IY,X(g) := inf
{

Λ(f), f ∈ H,Sx0(f) = g
}
.

To obtain a large deviations principle for the log-stock price Xε, we apply the Contraction Principle [4,

Theorem 4.2.1] since the projection on the first component is continuous, and the theorem follows.
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